

# Mars Rovers: Past, Present, and Future

Maria Bualat
NASA Ames Research Center
July 19, 2001

AIAA 7/19/01 Dinner Meeting

### Overview



- Introduction
- Rover past: Sojourner, 1997
- Rovers present: 2003 Mars Exploration Rovers
- New rover technologies at Ames
- Rovers future: 2007 mission and beyond

AIAA 7/19/01 Dinner Meeting





### Why is Mars interesting?

- Most Earth-like planet
- May once have had/still have liquid water and thus life
- May be possible to colonize

NASA's Mars Exploration Strategy:

### Follow the water

Water is key because almost everywhere we find water on Earth, we find life.

AIAA 7/19/01 Dinner Meeting







- Communications time delay
- Narrow communications bandwidth
- Extreme temperatures
- Rough, rocky terrain
- No global positioning system
- Dust



## Sojourner Rover Specs



- 13cm (~5in) wheel diameter
- Rocker-bogey chassis
- Top speed: .6m/min
- .22 m<sup>2</sup> solar panel providing peak of 16W
- With batteries, peak available power of 30W
- Normal driving power requirement is 10W
- 80C85 CPU, at 100Kips
- 176K of PROM and 576K of RAM



AIAA 7/19/01 Dinner Meeting







- Navigational:
  - front viewing stereo pair of cameras
  - laser striping system
  - gyro
  - corrections made using lander imager
- Scientific:
  - Alpha Proton X-RaySpectrometer (APXS)

# Sojourner Movies





AIAA 7/19/01 Dinner Meeting

300 m 328 yd





- Launched on December 4, 1996
- 7-month cruise to Mars with 4 trajectorycorrection maneuvers
- Landed at 9:57 a.m. PDT on July 4, 1997
  - Bounced at least 15 times up to 12 m high
- Sojourner driven down the ramp on sol 2
- Primary mission: 8 sols
- Total mission: 83 sols



# More Highlights



- Sojourner traverséd 100m around the lander
- Pathfinder returned over 16,000 lander images and 550 rover images
- Sojourner performed 16 chemical analyses of rocks and soil









AIAA 7/19/01

### 2003 Mars Exploration Rover (MER)





- Size:
  - 1.2 meters high
  - 150 kilograms
- Mobility
  - Top speed: 5 cm/s (.1 mph)
  - Capable of 100 m/day
  - Expected total traverse~1km
  - Dead lander
  - Communication via orbiter and direct-to-earth (DTE)
  - Lifetime
    - Primary mission: 90 sols

AIAA 7/19/01 Dinner Meeting

### Mast-mounted Instruments





#### Pancam

- Provide high spatial
   resolution on the
   morphology of the landing
   site
- Mini-Thermal Emission
   Spectrometer (Mini-TES)
  - Obtain mineralogical information for rocks and soils surrounding the rover
  - Capable of detecting silicates, carbonates, sulfates, phosphates, oxides, and hydroxides

AIAA 7/19/01 Dinner Meeting







- Rock Abrasion Tool (RAT)
  - Remove surface dust and weathering
- Microscopic Imager
- APXS
- MössbauerSpectrometer
  - Determine the properties of iron bearing materials



# Navigational Instruments



- Mast-mounted NavCam
- Front and Rear HazCam
- SunCam
  - Sun sensor used to determine global bearing (no compasses on Mars!)
- Inertial Measurement Unit (IMU)

AIAA 7/19/01 Dinner Meeting

# MER Movie



AIAA 7/19/01 Dinner Meeting

### "Athena" Rover (2003) Prototypes





- Size: (13/7 Sojourner)
  - 1.6 meters high (K9 camera)
- Instruments
  - Athena package analogues
- Used for field testing and development at JPL (FIDO, Rocky8), Ames (K9)







- Prototype of Mars rover
- Low power electronics
- Subsystems can be powered on/off
- CPU: 166 MHz mobile Pentium MMX





- High-resolution color cameras
- Near-Infrared Spectrometer
- RamanSpectrometer
- Camera HAnd lens MicroscoPe (CHAMP)







- Enables the robot to make decisions based on scientific criteria
- Science understanding modules:
  - Rock detection
  - Layer detection
  - Carbonate detector





- CRL Contingent Rover Language
- CX Conditional Executive
- Flexible, condition-based execution
  - temporal conditions (absolute, relative)
  - resource conditions
  - state-based conditions
  - conditions on any node (high- or low-level)
- Hierarchical structure
  - task: executable action
  - block: sequence of nodes
  - branch: choice point







- Visually tracks a target and drives to it
- Does not require and position information, only needs to know camera parameters and pan and tilt angles

300 m 328 yd









### Visualization (cont.)

- Stereo pipeline uses rover stereo images to create terrain models
- Viz gives scientists a better understanding of context and scale
- Provides measuring tools and markers
- Valuable tool for science planning using simulator, VirtualRobot
- Can run command sequences through the simulator to verify correctness



# Ground Operations - VIPER **CRL Plan** Visualization Server (VIZ) Kinematic Simulator (VirtualRobot) **Conditional Executive** 300 m Real Rover AIAA 7/19/01 Dinner Meeting

328 yd





- Blind field experiments:
  - Deploy a rover in a Mars analogue field site
  - Science team in mission control not told location
  - Given only data returned by the rover, team must characterize the site
- Test and demonstrate autonomy technologies and operation scenarios
- Train science team members

# Field Testing (cont.)





# Mars 2007+.





AIAA 7/19/01 Dinner Meeting







- Light-weight, small package for launch, wheels expand on landing
- Large wheels allow the rover to go right over large obstacles and the travel at higher speeds, ~1m/s (2.2 mph)

# Scorpion Robot



- Biologicallyinspired robotics
- Excellent mobility in rocky terrain
- Small, light-weight
- Could be carried by a larger robot

AIAA 7/19/01 Dinner Meeting





• Robots will act as aides for humans exploring

other planets

 Rover roles for exploration with humans:

- Scouts
- Pack mules
- Rescuers

